Home | Login | Register | Contact ICAM | About ICAM-I2CAM

ICAM-I2CAM

You are here: Home / Members / Member Profile

In this section

Member Details:

jditusa

John DiTusa

Screen Name: jditusa
Email: ditusa@phys.lsu.edu
ICAM Affiliation: Full ICAM Member
Branch Affiliation: Louisiana Consortium
Organization 1: Louisiana State University
Organization 2:
Organization Type: University
Research Area: “Magnetic materials that can be manipulated with the same control as present day electronic materials based on silicon technology are required for future development of spintronics and spin-based version of quantum computing. Spintronics has been coined to refer to devices that make use of not only the charge properties of semiconductors and metals, as in today’s transistor based devices, but also of the carriers spin (intrinsic angular momentum). We have focused our research on materials systems that may offer such control. This includes silicon based magnetic semiconductors, germanides, oxides, and sulfides where the carrier concentration and magnetic state can be controlled chemically or with external pressure. In addition, an understanding of the properties of these materials requires exploration of their low temperature properties. Since these materials are typically near metal-insulating and non-magnetic to magnetic phase transitions the physics of quantum phase transitions play a role in determining their low temperature properties. His research interests include: Magnetic semiconductors, quantum critical behavior in low carrier density materials, magnetoresistive materials and mechanisms of magnetoresistance, and quantum spin systems such as one-dimensional antiferromagnets which can be carrier doped.”
Research Description: “Magnetic materials that can be manipulated with the same control as present day electronic materials based on silicon technology are required for future development of spintronics and spin-based version of quantum computing. Spintronics has been coined to refer to devices that make use of not only the charge properties of semiconductors and metals, as in today’s transistor based devices, but also of the carriers spin (intrinsic angular momentum). We have focused our research on materials systems that may offer such control. This includes silicon based magnetic semiconductors, germanides, oxides, and sulfides where the carrier concentration and magnetic state can be controlled chemically or with external pressure. In addition, an understanding of the properties of these materials requires exploration of their low temperature properties. Since these materials are typically near metal-insulating and non-magnetic to magnetic phase transitions the physics of quantum phase transitions play a role in determining their low temperature properties. His research interests include: Magnetic semiconductors, quantum critical behavior in low carrier density materials, magnetoresistive materials and mechanisms of magnetoresistance, and quantum spin systems such as one-dimensional antiferromagnets which can be carrier doped.”
Thrust Area: Quantum Matter


David Pines Remembered

David Pines Remembered

Branches

27 US and 30 branches abroad (Jul 2018)

The Emergent Universe

The Emergent Universe

ICAM Events & Schools

NSF NSF